Plane wing configurations and wing shapes

Aircraft wings are built with many shapes and sizes for desired flight characteristics of an airplane to achieve greater lift, balance or stability in flight.
Here are some different wing types:

delta wing
Thin triangular wing that is especially aerodynamic.
CF-18_Donatello-delta-wing

variable geometry wing
Arrow-shaped wing found on combat aircraft; the angle it forms with the fuselage can be changed in flight.
f14a5-variable geometry wing

tapered wing
Wing that is perpendicular to the fuselage and whose width decreases toward the tip.
0806022_6tapered wing

straight wing
Long wing of consistent width and perpendicular to the fuselage; it is found on low-speed planes such as cargo and light planes.
straight wing plane

swept-back wing
Arrow-shaped wing that is found on jet planes.
747-8-swept-back wing

The figure below also shows the common wing forms and configuration.
airplane-wing-forms-configuration

Wing configurations

The F-14 Tomcat is a supersonic aircraft with a variable geometry wing. This aircraft wing geometry changes according to flying speed by swinging the wings forward and backward.
F-14 Tomcat


Aspect Ratio

Aspect ratio is an indicator of the general performance of an aircraft wing. In aerodynamics, the aspect ratio of a wing is defined as the square of the span divided by the wing area. It is a measure of how long and slender a wing is from tip to tip.
wing Aspect Ratio

For “high” aspect ratio aircraft wing indicates long, narrow wings, whereas a “low” aspect ratio wing indicates short and stubby. Higher aspect ratio has the effect of a higher rate of lift increase, as angle of attack increases, than lower aspect ratio wings.

Respect ratio2

High aspect ratio wing – higher Lift Coefficient
lower stalling angle of attack. eg. Gliders

Low aspect ratio wing – lower Lift Coefficient
high stalling angle of attack… eg. Fighter Jets

However because wings may have varied plan forms it is usual to calculate aspect ratio as:

Aspect ratio = wing span² / wing area = Wing span / Chord length

Dihedral Angle

The purpose of dihedral is to improve the aircraft stability during flight. Dihedral angle is added to the wings for later or rolls stability. When the aircraft encounters a slight roll displacement caused by distribute from air stream or a gust of wind. An aircraft wings with some dihedral will naturally return to its original position.

The front view of this wing shows that the left and right wing do not lie in the same plane but meet at an angle. The aircraft’s wing is inclined upward an angle from root to tip. The angle that the wing makes with the local horizontal is called the dihedral angle.
This is the reason why most commercial airliners such as the 747 or 737 have a dihedral wing for stability.

Anhedral Angle

Highly maneuverable fighter planes, on the other hand do not have dihedral but rather have the wing tips lower than the roots giving the aircraft a high roll rate such as the harrier GR7 jets. A negative dihedral angle is called anhedral.
Harrier jet2

  • Comments Off on Airplane Wing Geometry and Configurations